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Abstract: Mathematical modelling is an important part of Higher 3 Mathematics, a 
new mathematics syllabus for pre-University students under the GCE Advanced 
level curriculum in Singapore. In this paper, how technology may be exploited to 
facilitate learning and investigation of certain key concepts in the topic is discussed. 
Examples such as the logistic equation and modelling of epidemics are presented in 
some detail. Some implications on its impact in the classroom are also discussed. 
 

Introduction 
Although mathematical modelling has had a reasonably long history and has 
featured prominently in many tertiary courses, the term “mathematical modelling” 
itself does not seem to have a precise definition that mathematicians or mathematics 
educators can agree upon. It seems there are various distinct ways of defining it 
(Blum, 1993).  In fact, over the years, different interpretations arising from different 
views and research perspectives have been proposed and used. For instance, 
according to Cross and Moscardini (1985) and Bassanezi (1994), mathematical 
modelling is simply the process of understanding, simplifying and solving a real life 
problem in mathematical terms.   
 
Mason and Davies (1991) defined mathematical modelling as essentially the 
movement of a physical situation to a mathematical representation. Along similar 
lines, Swetz and Hartzler (1991) defined it as a process of observing a phenomenon, 
conjecturing relationships, applying and solving suitable equations, and interpreting 
the results. In contrast, Yanagimoto (2005) considered mathematical modelling as 
not just a process of solving a real life problem using mathematics but applying 
“mathematics which is useful in society”. 
 
Some researchers view all applications of mathematics as mathematical models 
(Burghes, 1980). However, there are others who feel that there is a difference 
between mathematical modelling and applications of mathematics (Galbraith, 
1999). According to Galbraith, for an application, although the mathematics and the 
context are related, they are separable.  In other words, after applying the necessary 
mathematics to solve the problem in some given context, we no longer “need” the 
context. A modelling task is distinctly different in that the focus is on investigating 
a particular problem or phenomenon, and the mathematics used is simply a means in 
understanding or solving the problem. 
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In addition, Galbraith believed that the teaching of mathematical modelling may 
take either a “structured” or “open” approach.  In structured modelling, a real life 
context is provided and students are to use the appropriate mathematics to solve the 
problem. Model formulation is not expected but important links between real data 
or given information and the mathematics must be made. This approach ensures 
some control over the mathematics that students will apply. 
 
In open modelling, the challenge is to formulate a model based on the given 
information and develop some mathematical representation of the context. In this 
case, students will need to study the problem and apply the mathematics at a level 
they are comfortable with in an attempt to solve the problem. This means that the 
teacher does not have much control over the mathematics chosen by the students. 
 
Mathematical modelling and H3 Mathematics 
Notwithstanding the differing views on mathematical modelling and what it 
constitutes, its growing importance has been recognised and acknowledged by the 
Ministry of Education in Singapore. This is reflected in its new syllabus for 
mathematics. The role of mathematical modelling and applications in Singapore’s 
mathematics curricula across the different levels is emphasised by the inclusion of 
the term “applications and modelling” as one of the components in their framework 
for mathematics education (Ministry of Education, 2006a). 
 
In particular, in the new Higher 3 (or H3) Mathematics syllabus for pre-University 
students, mathematical modelling is featured distinctly under the topic Differential 
Equations. H3 Mathematics, which will be offered as a GCE Advanced level 
subject from the 2007 examinations onwards, is meant for students who have a 
strong aptitude for mathematics. The syllabus serves to provide these students with 
the “opportunity to further develop their mathematical modelling and reasoning 
skills” (Ministry of Education, 2006b). The four main topics in this new syllabus 
are Plane Geometry, Graph Theory, Combinatorics and Differential Equations. In 
Differential Equations, even though the focus is first order differential equations, 
there is sufficient scope for exploring concepts such as analytic solutions, graphical 
techniques, numerical methods and mathematical modelling. More specifically, the 
topic includes modelling of population dynamics, and concepts such as equilibrium 
points, harvesting, bifurcation, and so on. 
 
While there may be several interpretations of mathematical modelling, for the 
purpose of the ensuing discussion, we shall define mathematical modelling as the 
process of representing or describing physical systems or problems in the real world 
using mathematics so as to gain a more precise understanding of the problem (Ang, 
2006).  The process may be presented as a flow of events as illustrated in Figure 1.  
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Figure 1. The modelling process (adapted from Ang, 2006) 

 
In H3 Mathematics, the model formulation step is not emphasised. In other words, 
the approach adopted is essentially one of structured modelling. Nonetheless, the 
other stages of the modelling process are equally important in providing a way of 
introducing real life mathematics into the H3 Mathematics classroom. 
 

Role of technology 
The approaches to teaching mathematical modelling have been influenced by the 
development and introduction of technologies such as graphing calculators and 
computer software (Ferrucci & Carter, 2003). Many researchers and teachers have 
reported the successful use of technology in introducing mathematical ideas through 
exploration and investigation. For instance, the use of a spreadsheet to explore 
mathematical concepts has been discussed by Chua and Wu (2005) for a secondary 
classroom, and by Beare (1996) at the college level. The use of computer algebra 
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systems such as Maple in some tertiary courses has generally been well received by 
students (Ang & Awyong, 1999). 
 
In the context of mathematical modelling in the H3 Mathematics syllabus, among 
other possible applications, technology may be used to help the student to 

(a) explore graphical solutions of differential equations, 
(b) perform computational experiments in models, 
(c) work with real data, and 
(d) do more with less mathematics. 

It must be pointed out that while students taking H3 Mathematics are expected to be 
able to use a graphing calculator, they are not expected to know how to program it. 
Students are also expected to make good and appropriate use of the graphing 
calculators in the examinations. 
 
In the next section, four examples are considered, each of which serves to illustrate 
the possible use of technology as listed above. The examples are restricted to topics 
relevant to H3 Mathematics. 
 

 
Examples 

Example 1: Graphical solutions for the logistic equation 
Consider a logistic equation of the form 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

N
PkP

dt
dP 1  (1) 

which may be used to model the growth of a population ( )tP  at time t , with an 
intrinsic growth rate of  and carrying capacity .  While it is possible to solve 
the differential equation analytically, very often it is just as useful to obtain a 
graphical solution to gain a good understanding of the model.  To do so, one could 
use a graphing tool with arbitrary values for  and , and obtain the slope field for 
the equation. Figure 2 shows the slope field for Equation (1) with a few typical 
solution curves generated using the shareware Graphmatica 2.0. 

k N

k N

From Figure 2, it can be observed that as long as the initial population,  is 
positive and non-zero, the population 

( )00 PP =
( )tP  will tend towards the carrying 

capacity . In fact, if N NP << 00 , then ( )tP  will increase as t  increases and tend 
towards  as . Conversely, if , then N ∞→t NP >0 ( )tP  will decrease as t  
increases, but it will still tend towards  as N ∞→t . The carrying capacity  is 
one of the equilibrium solutions in this case. 

N
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Figure 2. Slope field for Equation (1) with some typical solution 
curves obtained using Graphmatica 2.0. 

 
In modelling population dynamics, at times, such qualitative analysis from graphical 
solutions may be all that is needed. This example shows how a simple graphing tool 
can be used to elicit useful and important information from the model. Of course, 
the slope field and typical solution curves may be plotted by hand. Using 
technology means one can concentrate on the mathematics of the model rather than 
the tedious task of plotting. 
 
Example 2: Logistic equation leading to chaos 
The H3 Mathematics syllabus includes numerical solutions of first order differential 
equations.  In particular, the use of Euler’s method is expected. 

Consider once again the logistic equation similar to Equation (1) but written as 

 ( xx
dt
dx

−= 1 ) . (2) 

As mentioned earlier, it is not difficult to obtain an analytic or exact solution. 
However, we shall examine the use of Euler’s method in finding a numerical 
solution for Equation (2) and demonstrate how one could carry out computational 
experiments using technology, and gain further insights into the equation and the 
model. 
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Applying Euler’s method with a step size of  to Equation (2), and assuming an 
initial condition , we obtain 

h
( ) 00 xx =

 ( ),11 nnnn xhxxx −+=+    for  K ,2 ,1 ,0=n  . (3) 

Given  and , it will not be difficult to implement the method on a spreadsheet.  
If we use a step size of , we find that Euler’s method gives a fairly good 
approximation to the exact solution after a few iterations. The equilibrium solutions 
in this case are  and 

0x h
5.0=h

0=x 1=x , and if  is positive, then the solution tends to 
 as  (or ) gets larger. Figure 3 shows a table of values and a plot of the 

numerical solutions for the case when 

0x
1=x t n

5.00 =x  and 5.0=h .   

h = 0.5

n x
0 0.50000
1 0.62500
2 0.74219
3 0.83786
4 0.90579
5 0.94845
6 0.97290
7 0.98608
8 0.99294
9 0.99645
10 0.99822
11 0.99911
12 0.99955
13 0.99978
14 0.99989
15 0.99994
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Figure 3. Numerical solution of Equation (2) using Euler's 
method with 5.0=h  

Now, with a spreadsheet tool, it is easy to experiment with different values of  to 
see what happens to the numerical solution as  varies. Figures 4(a) through 4(f) 
show the numerical solutions for values of  ranging from 0.9 to 2.95.  As can be 
seen from the graphs in the figures, the solutions can change quite drastically as the 
step size changes. 

h
h

h
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(a)  9.0=h (b) 85.1=h  

(c)  25.2=h
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(f) 95.2=h  (e)  85.2=h

Figure 4. Solutions of the logistic equation using Euler's method with 
various values of  h
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With , we observe that Euler’s method still works well. However, with 
, we notice that the solution oscillates about 

9.0=h
85.1=h 1=x  with successive 

iterations at the beginning, and more iterations are required to achieve the 
equilibrium solution  

Setting , the method produces two distinct equilibrium solutions with 
increasing  and with , we have four equilibrium solutions (Figures 4(c) 
and 4(d) respectively). This is known as cycle-doubling bifurcation. If we increase 
the step size to  and 

25.2=h
n 55.2=h

85.2=h 95.2=h , we notice a different pattern. With 
, the equilibrium solutions seem to hover around three or four values as 

shown in Figure 4(e). Increasing the step size to 2.95, we observe that there does 
not seem to be any pattern in the solutions (Figure 4(f)). In fact, the points (that is, 
numerical solutions) seem to appear all over and it becomes hard to predict what 
would happen next. This phenomenon is known as chaos. We have just experienced 
a truly remarkable piece of mathematics through this experiment; what started out 
as a purely deterministic and predictable process has ended up in a chaotic and 
unpredictable state. 

85.2=h

 
This example shows that a simple spreadsheet tool can be used quite readily in 
implementing a numerical scheme. In the not too distant past, one would probably 
need to first learn a computer language, and then write a computer program to solve 
the equation numerically. In addition, the power of the electronic spreadsheet 
becomes more evident when we experiment with different parameter values to 
demonstrate interesting mathematical phenomena. 
 
Example 3: A model for a SARS outbreak 
Some time in March 2003, the World Health Organisation (WHO) issued a global 
alert on an emerging infectious disease known as Severe Acute Respiratory 
Syndrome, or SARS.  In Singapore, 206 cases were recorded in 70 days and among 
these, 31 lost their lives. An attempt to construct a model for the SARS outbreak in 
Singapore, using real data obtained from the literature, is shown below.  

A simple epidemic model consists of two compartments, the susceptible population 
and the infected population (Figure 5). This is sometimes known as the “SI” model 
as it involves susceptible individuals (“S”) becoming infected (“I”). 
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Figure 5. A simple epidemic model 
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Suppose  and  are the number of infected and susceptible individuals at 
time  (in days) respectively. We further assume that during the course of the 
epidemic, the total population of the community remains constant. Thus, 

)(tx )(ty
t

Ntytx =+ )()( , where  is the size of the population. The spread of a highly 
communicable disease such as SARS may be modelled by the logistic equation 
given by 

N

 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

N
xxk

dt
dx 1  (4) 

where  is a positive constant representing the transmission rate (Ang, 2004). 
Equation (4) may be solved using the standard method of separation of variables 
and integration after performing partial fraction decomposition.  Suppose the initial 
condition is , then the solution to Equation (4) may be written as 

k

0)0( xx =

 

 
( ) tkexN

Nx
 

0  11 −−+
= . (5) 

The transmission rate  may be estimated from data. For instance, data for the 
SARS outbreak in Singapore in 2003 may be obtained from Heng and Lim (2003). 
We define an “average error”, 

k

  

 
( )
n

xx
E

n

i ii∑=
−

= 1
2ˆ

, (6) 

where  and  are data values and model values respectively. A good estimate of 
 is obtained when 

ix̂ ix
k E  is minimised. One way to do this is to use the “Solver tool” 
in Microsoft Excel. The Solver tool essentially allows the user to minimise (or 
maximise) the value of a selected cell by varying the values of other cells specified 
by the user, as explained in detail in Lawson and Tabor (2001). As an example, with 
the data given in Heng and Lim, the Solver tool returns a value of 1686.0=k (to 
four decimal places) with a minimum value of 9145.1=E . Figure 6 shows the 
graph of the model, with this value of k , plotted against the real data. Although the 
model compares fairly well with the real data, it can be improved and refined, and is 
discussed in detail in Ang (2004). 
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Figure 6. Graph of SARS outbreak model and real data 
 
 
Example 4: An SIR epidemic model 
The model for a SARS outbreak discussed in the preceding example, though 
interesting, is rather simplistic. It is a two-compartment model which does not take 
into account the possibility of infected individuals recovering. A more commonly 
used model for epidemics is the “SIR” model as illustrated in Figure 7. 

 

 
Susceptible Infected Recovered  

 

Figure 7. The SIR epidemic model 

Suppose , S I  and  represent the populations of susceptible, infected and 
recovered individuals at time 

R
t , then the SIR model for an epidemic may be written 

as follows:  

 SI
dt
dS υ−= ,  (7) 

 ISI
dt
dI  γυ −= , (8) 
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and I
dt
dR  γ= ,  (9) 

where υ  and γ  are constants representing transmission rate and recovery rate 
respectively. In addition, if we assume the system to be closed, then 

, where the constant  is the total population of the 
community under consideration. 

NtRtItS =++ )()()( N

We note that the system of differential equations is quasi-linear and coupled.  
Solution of such a problem is outside the scope of H3 Mathematics and the students 
may not be able to tackle it. However, with technology, it is possible to obtain a 
good understanding of the model and the mathematics of its solution. In other 
words, technology can help the students do more, or at least appreciate more 
complex models, with less mathematics. 

Using Euler’s method, we can write the system of equations as a set of difference 
equations as follows: 

 

 ( )nnnn IStSS υ−Δ+=+1 , (10) 

 ( )nnnnn IIStII  1 γυ −Δ+=+ , (11) 

and ( )nnn ItRR  1 γΔ+=+ .    (12) 

 
The method may be implemented using a spreadsheet to obtain numerical solutions 
of the model. As an example, suppose we are given that at time , in a 
community of 500 individuals, there is one individual who is infected with an 
infectious disease. Suppose we also know that the transmission rate is 0.003 per 
susceptible per day and the recovery rate is per day. With this information, we 
can solve the model numerically on a spreadsheet, the results of which is depicted 
as a set of graphs in Figure 8.  

0=t

5.0

 
From the graphical solutions, one could examine the model more closely and 
investigate various aspects of the dynamics of the epidemic. For instance, we could 
look at the time when the number of infected individuals reaches a maximum, or the 
time period when the number of susceptible individuals falls dramatically. We 
could also investigate the effect of the recovery rate on the overall dynamics, or 
examine the impact on epidemic control by varying the transmission rate. These 
experiments may be carried out on the spreadsheet once the numerical method has 
been implemented. 
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Figure 8. Numerical solution of the SIR model 
 
 

Discussion 
Although analytic solutions are useful and provide a good means for understanding 
and analysing a model, there are times when it may not be possible to obtain an 
analytic solution for a differential equation. In such instances, graphical techniques 
may be more useful. With computer software or even handheld tools such as 
graphing calculators, it is possible to quickly and efficiently obtain a graphical 
solution and provide a way to analyse a model. Example 1 serves to illustrate this 
very useful feature of technology in modelling population dynamics. 
 
In the second example, we demonstrated that technology may be used to run and re-
run computational experiments many times over. This is useful when, for instance, 
we wish to examine the effect of a parameter on a certain mathematical model.  
This is in fact one advantage of a mathematical model over a physical model as it is 
usually more economically viable to perform computational experiments than real 
physical experiments. 
 
One of the key features of modelling is real data. In real life, collected data for a 
model may not be as convenient to work with as those taken from exercises in 
textbooks. Very often, it is tedious, if not impossible, to have to work with real data 
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by hand. However, technology frees us from some of these mundane tasks so that 
we can focus on the mathematics and the model. 
 
Developing mathematical modelling skills requires practice on more open tasks in a 
realistic context (Crouch & Haines, 2004). However, this may demand a certain 
level of mathematical knowledge and skill beyond H3 Mathematics. Nonetheless, it 
is sometimes possible to “skip” some higher level mathematics and yet continue to 
explore key features of a model with the aid of technology. In other words, with 
suitable technology, it is possible to overcome certain “mathematical handicaps” 
which could hinder the understanding of a model. In this sense, technology can help 
us do more with the model with less mathematics. 
 

Conclusion 
Teaching the process of mathematical modelling is as important as, if not more 
important than, teaching mathematical models, the product (Ang, 2001). In order to 
truly experience this process, one has to deal with a real life problem, and handle 
real data, or even test the validity of models through computational experiments.  
Doing some of these tasks by hand and without the aid of technology can be 
tedious, time-consuming and sometimes impossible. Thus, in this paper, ways in 
which technology can help capture the essence of this process have been suggested.   
 
In principle, the use of technology in teaching mathematical modelling may sound 
attractive, but in practice, it can be problematic. One chief problem arises from the 
fact that its use is somewhat restricted in the final examinations since not all models 
of graphing calculators are permitted. In daily assignments, students may be 
encouraged to use an electronic spreadsheet (such as Microsoft Excel) to explore a 
model or implement a numerical method. In the examination, however, electronic 
spreadsheets are not available (nor permitted). Until the assessment is aligned with 
the innovation, it may be difficult to convince students to invest time and effort to 
embrace the innovation. 
 
The lack of confidence in using technology could be a reason why mathematics 
teachers rarely use computers (or graphing calculators) in the classroom even when 
they are available (Kadijevich, Haapasalo, & Hvorecky, 2005). From a H3 
mathematics teacher’s perspective, the task of having to learn new tools while 
grappling with a new syllabus can be daunting, to say the least. Nevertheless, with 
sufficient practice and appropriate support, it is possible for teachers to capitalise on 
the power of technology to make the learning of mathematical modelling a very 
enriching and engaging mathematical experience for their H3 Mathematics students. 
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